bbk 000000

UDC 628.54

Sazonov D. V.

Influence of the pump type on the parameters of the pneumatic-hydraulic aeration system in flotation apparatus


Flotation has been one of the efficient water treatment technologies. Flotation treatment is based on small gas bubbles generated by different methods, pneumatic-hydraulic, in particular. A case is considered of air feeding before the pump and subsequent water-air mixture passing through the aerator, and air being broken to small bubbles. Possible operation in the presence of air determines the choice of self-priming pumps (centrifugal and vortex). Experiments were carried out on determining two of the most important aeration parameters: bubbling rate and average size of generated air bubbles that determine the efficiency of water flotation treatment. Based on the data obtained it is shown that in most cases centrifugal pumps have the advantages: considerable part of the air entering the pumps is dispersed at the outlet of the aerator to 30–100 μm bubbles; whereas in case a vortex pump is used air bubbles of more than 200 μm size are generated which is ineffective for water flotation. It is stated that for some wastewater types the use of vortex self-priming pumps can be more reasonable.

Key words

, , , , ,

The further text is accessible on a paid subscription.
For authorisation enter the login/password.
Or subscribe


  1. Ksenofontov B. S. Flotatsionnaia obrabotka vody, otkhodov i pochvy [Water, wastes and soil treatment by flotation. Moscow, Novye Tekhnologii Publ., 2010, 272 p.].
  2. Ksenofontov B. S., Kozodaev A. S., Taranov R. A., Ivanov M. V., Petrova E. V., Vinogradov M. S., Voropaeva A. A. [Development and use of flotocombines for wastewater treatment]. Bezopasnost’ Zhiznedeiatel’nosti, 2014, no. 7, pp. 21–25. (In Russian).
  3. Ksenofontov B. S., Petrova E. V. [Pat. 132434, RF. IPC C02F 1/24. Flotosettler]. Izobreteniia. Poleznye Modeli, 2013, no. 26. (In Russian).
  4. Painmanakul P., Sastaravet P., Lersjintanakarn S., Khaodhiar S. Effect of bubble hydrodynamic and chemical dosage on treatment of oily wastewater by Induced Air Flotation (IAF) Process. Chemical Engineering Research and Design, 2010, no. 5–6, v. 88, pp. 693–702.
  5. Moskvicheva E. V., Moskvicheva A. V., Ignatkina D. O., Sidiakin P. A., Shchitov D. V. [Kinetic model of flotation with the use of mixed chemical based on industrial wastes]. Vestnik Volgogradskogo Gosudarstvennogo Arkhitekturno-Stroitel’nogo Universiteta. Stroitel’stvo i Arkhitektura, 2015, issue 40 (59), pp. 45–57. (In Russian).
  6. Liu S., Wang Q., Sun T., Wu C., Shi Y. The effect of different types of micro-bubbles on the performance of the coagulation flotation process for coke waste-water. Journal of Chemical Technology & Biotechnology, 2012, no. 87, pp. 206–215.
  7. Eskin A. A., Zakharov G. A., Tkach N. S., Tsygankova K. V. Intensification dissolved air flotation treatment of oil-containing wastewater. Modern Applied Science, 2015, v. 9, issue 5, pp. 114–124.
  8. Petrunin A. A. Sovershenstvovanie tekhnologii flotatsionnoi ochistki neftesoderzhashchikh proizvodstvennykh stochnykh vod s ispol’zovaniem rotorno-dispergiruiushchego ustroistva [Improvement of the technology of industrial oily wastewater flotation treatment with the use of a rotary dispersing device. Ph. D. thesis in Engineering Science. Penza, 2016, 161 p.].
  9. Voronov Iu. V., Kazakov V. D., Tolstoi M. Iu. Struinaia aeratsiia: Nauchnoe izdanie [Jet aeration: Scientific publication. Moscow, ASV Publ., 2007, 216 p.].
  10. Ksenofontov B. S., Antonova E. S. [Enhancement of industrial wastewater flotation treatment with the use of a combined aeration system including ejectors and dispensers]. Vodoochistka. Vodopodgotovka. Vodosnabzhenie, 2016, no. 9, pp. 32–36.
  11. Zhang W. The effects of frothers and particles on the characteristics of pulp and froth properties in flotation: A Critical Review. Journal of Minerals and Materials Characterization and Engineering, 2016, no. 4, pp. 251–269.

vstmag engfree 200x100 2

mvkniipr ru